
Embedded Systems 
 
Embedded systems refer all kinds of systems performing either signal processing or control 
tasks and that do not look like our PC or workstation, but are instead designed for a specific 
application or area of use and optimized in terms of size, cost, performance, speed, and 
interfaces. 
In contrast to a saturated market of multi-purpose computers, the area of embedded systems 
will be a market billion-dollar worth and countless application possibilities in the coming years. 
The opportunities in the labor market are correspondingly very positive. 
Examples of embedded systems are: 

• Wireless and battery-powered systems: e.g., mobile phones, tablet PCs, Bluetooth 
communication devices, wearable computers (computers as part of clothing) 

• Building automation: e.g., field bus systems, automotive systems, ambient 
intelligence, and industrial controls 

• Sports and entertainment: e.g., electronic pulse measurement, navigation and 
monitoring, electronic games 

• Dedicated computers and processors: e.g., digital signal processors, microcontrollers 
and reconfigurable computing systems, e.g., FPGAs 

The focus of this major field of study is the design and design methodologies for embedded 
systems. In particular, the following topics are taught: 

• How do I design an embedded system? Languages and models for the description, 
analysis, and simulation of functional and temporal behavior play an important role 
here. 

• Which design problems need to be solved in product development? This includes the 
selection of suitable hardware and software modules, mapping functionality to these 
components and scheduling algorithms. 

• Which constraints have to be met or considered in the design? Size, cost, weight, 
energy consumption, design time and performance are the most important quality 
criteria for the design of embedded systems. In this realm, it is essential how these 
qualities metrics can be determined, either analytically, by simulation, by synthesis or 
by other appropriate estimation techniques. 

• How can I optimize my system concerning multiple objectives? A central question of 
the field of hardware/software co-design is whether a function should be better 
implemented in hardware or software for cost and efficiency reasons (so-called 
hardware/software partitioning). 

• Finally, how do I show that my designed system works correctly? In this context, we 
will learn about methods for validation, e.g., test and simulation as well as formal 
verification. 

 
 


